
MATH2050C Selected Solution to Assignment 1

Section 2.1.

Solution 3.

(a) 2x+ 5 = 8. Subtracting both sides by 5 (or adding −5) to get 2x = 3 and then divide both
side by 2 (or multiply both side by 1/2) to get x = 3/2 (3/2 is the same as 3

2).

(b) x2 = 2x. Adding both side by −2x to get x2 − 2x = 0. By (D), x(x− 2) = 0. Using ab = 0
means a or b equals to 0, we conclude that either x = 0 or x = 2.

(c) x2−1 = 3. Adding −3 to both sides to get x2−4 = 0. Then by factorizing (x+2)(x−2) = 0.
Using ab = 0 implies a or b equals to 0, we conclude x = 2 or −2.

(d) (x− 1)(x + 2) = 0. Immediately get x = 1 or −2.

Solution 13. Show that a2 + b2 = 0 if and only if a = b = 0. As a2 + b2−a2 = b2 ≥ 0, we know
that a2 ≥ a2 + b2, so a2 ≤ 0. On the other hand, a2 ≥ 0. Thus, a2 = 0 which implies a = 0.
Similarly, b = 0. The other direction is obvious.

Solution 16.

(a) x2 > 3x+ 4. By factorization this is the same as (x− 4)(x+ 1) > 0. Therefore, the solution
set is {x : x > 4 or x < −1}.
(b) 1 < x2 < 4. The solution set for x2 > 1 is {x : x > 1, or x < −1} and the solution set for
x2 < 4 is {x : x ∈ (−2, 2)}. Thus, the solution set for this problem is (−2,−1) ∪ (1, 2).

(c) 1/x < x. When x is positive, this is the same as 1 < x2 whose solution set is {x : x > 1}.
When x < 0, this is the same as 1 > x2 whose solution set is {x : x ∈ (−1, 0)}. Hence the
solution set for this inequality is (1,∞) ∪ (−1, 0).

(d) 1/x < x2. When x is positive, this is the same as 1 < x3 whose solution set is {x : x > 1}.
When x is negative, this inequality always holds, so the solution set is (−∞, 0). Therefore, the
solution set for this inequality is (1,∞) ∪ (−∞, 0).

Solution 23. Show that for positive a, b and n ∈ N, a < b if and only if an < bn.

⇒. Use induction on n. It is obviously true when n = 1. Assume that it is true for n. Then
an+1 = aan < abn by induction hypothesis. So, an+1 < abn < bn+1, done.

⇐. When an < bn, by factorization 0 < bn − an = (b − a)(bn−1 + bn−2a + · · · + an−1) which
implies that b− a > 0 since the second factor is always positive.

Supplementary Exercises.

(1). (a) Show that every natural number n > 1 can be written uniquely as

n = pn1
1 pn2

2 · · · p
nk
k ,

where pj ’s are prime numbers p1 < p2 < · · · < pk and nj ≥ 1. Suggestion: Use induction on n.

(b) Show that for every natural numbers n,m, there exist n′,m′ with no common factor greater

than 1 such that
n

m
=

n′

m′
.

Solution. (a). Starting from n = 2, a trivial case. Now assuming the factorization is valid for
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all k ≤ n, we are going to show that it holds for n. Indeed, if n is a prime number, then n = n1

the factorization holds. If not, let p > 1 be one of its prime factor. Then n/p is a number less
than n. By induction hypothesis,

n

p
= pn1

1 pn2
2 · · · p

nk
k ,

so n has a similar decomposition, done. Such factorization is clearly unique (assuming p1 <
p2 < · · · < pk).

(b). Easily follows from (a).

Remark. (b) was used in the proof of Theorem 2.1.4.

(2) Denote Zp = {0, 1, 2, · · · , p− 1} and define addition and multiplication on Zp by modulo p,
that is, a + b and a · b is equal to the reminder of ordinary a + b and a · b after divided by p
respectively. Show that Zp satisfies all algebraic properties of the real number system. You may
try p = 5 first.

Solution. We will work on p = 5. It is clear that all conditions (A1)-(A4), (M1)-(M4) and
D are satisfied. It suffices to check the existence of multiplicative inverse. In fact, we have
2 · 3 = 1(mod 5), 3 · 2 = 1(mod 5), 4 · 4 = 1(mod 5).


